Three-dimensional joint inversion for magnetotelluric resistivity and static shift distributions in complex media
نویسندگان
چکیده
[1] Accurate interpretation of magnetotelluric (MT) data in the presence of static shift arising from near-surface inhomogeneities is an unresolved problem in threedimensional (3-D) inversion. While it is well known in 1-D and 2-D studies that static shift can lead to erroneous interpretation, how static shift can influence the result of 3-D inversion is not fully understood and is relevant to improved subsurface analysis. Using the synthetic data generated from 3-D models with randomly distributed heterogeneous overburden and elongate homogeneous overburden that are consistent with geological observations, this paper examines the effects of near-surface inhomogeneity on the accuracy of 3-D inversion models. It is found that small-scale and shallow depth structures are severely distorted while the large-scale structure is marginally distorted in 3-D inversion not accounting for static shift; thus the erroneous near-surface structure does degrade the reconstruction of smaller-scale structure at any depth. However, 3-D joint inversion for resistivity and static shift significantly reduces the artifacts caused by static shifts and improves the overall resolution, irrespective of whether a zero-sum or Gaussian distribution of static shifts is assumed. The 3-D joint inversion approach works equally well for situations where the shallow bodies are of small size or long enough to allow some induction such that the effects of near-surface inhomogeneity are manifested as a frequency-dependent shift rather than a constant shift.
منابع مشابه
Three-dimensional Magnetotelluric Modeling of data from Northeast of Gorgan Plain
Magnetotelluric measurements have been conducted in the period range of 0.005-128 s along five parallel east-west directed profiles including 85 sites totally in the north-eastern part of Gorgan Plain, Golestan Province, North of Iran; with the aim of exploring iodine. Distortion and dimensionality analysis of data imply the existence of a north-south elongated two-dimensional model with some l...
متن کاملInverse modeling of HEM data using a new inversion algorithm
Helicopter-borne frequency-domain electromagnetic (HEM) surveys are used extensively for mineral and groundwater exploration and a number of environmental investigations. To have a meaningful interpretation of the measured multi- frequency HEM data, in addition to the resistivity maps which are provided in each frequency or for some particular depth levels, it is a necessity ...
متن کاملJoint inversion of marine CSEM and MT data using a “structure”-based approach
s, 28, 719–722. Commer, M., and G. Newman, 2008a, New advances in three-dimensional controlled source electromagnetic inversion: Geophysical Journal International, 172, no. 2, 513–535, doi:10.1111/j.1365-246X.2007.03663.x. ———, 2008b, Optimal conductivity reconstruction using three-dimensional joint and model-based inversion for controlled-source and magnetotelluric data: 78th Annual Internatio...
متن کاملTwo-Dimensional Magnetotelluric Forward Research for the Vertical Anisotropy
When we study and process magnetotelluric data, the earth’s interior structure is usually equated with isotropic medium in the existing approaches. When the underground structure is complex, there is serious resistivity anisotropy in macroscopic view, and then the traditional processing and interpretation methods often produce wrong results. For that we must establish the study method based on ...
متن کاملStructural imaging in the Rocky Mountain Foothills (Alberta) using magnetotelluric exploration
The magnetotelluric method has improved significantly in recent years and is being used in hydrocarbon exploration in regions where seismic exploration is difficult. This includes areas where highvelocity carbonates and volcanic rocks are present in the near surface, overthrust belts, and in subsalt imaging. Magnetotelluric exploration was used in the Rocky Mountain Foothills in 2002 to determi...
متن کامل